Dynamics of Decision Making in Traditional Companies Using Three-Level Quadratic Programming Problem with Random Rough Coefficient in Constraints
Abstract
This paper presents three-level quadratic programming problem with random rough coefficient in constrains. At the first phase of the solution algorithm, and to avoid the complexity of this problem, we begin with converting the rough nature in constraints into equivalent crisp form. At the second phase, a membership function is constructed to develop a fuzzy model for obtaining the optimal solution of the three-level quadratic programming problem. An auxiliary problem is discussed as well as an example is presented.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright & License
All Research Plus Journals (RPJ) publish open access articles under the terms of the Creative Commons Attribution (CC BY-SA 4.0) https://creativecommons.org/licenses/by-sa/4.0/ License which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article in a journal published by a RPJ is retained by the author(s). Authors grant RPJ a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to RPJ either via RPJ journal portal or other channel to publish their research work in RPJ agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by RPJ.
3rd party copyright: It is the responsibility of author(s) to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.
Disclaimer
Research Plus Journals Open Access articles posted to repositories or websites are without warranty from RPJ of any kind, either express or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. To the fullest extent permitted by law RPJ disclaims all liability for any loss or damage arising out of, or in connection, with the use of or inability to use the content.